Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Evol Biol ; 36(9): 1282-1294, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37551039

RESUMO

Seed banking (or dormancy) is a widespread bet-hedging strategy, generating a form of population overlap, which decreases the magnitude of genetic drift. The methodological complexity of integrating this trait implies it is ignored when developing tools to detect selective sweeps. But, as dormancy lengthens the ancestral recombination graph (ARG), increasing times to fixation, it can change the genomic signatures of selection. To detect genes under positive selection in seed banking species it is important to (1) determine whether the efficacy of selection is affected, and (2) predict the patterns of nucleotide diversity at and around positively selected alleles. We present the first tree sequence-based simulation program integrating a weak seed bank to examine the dynamics and genomic footprints of beneficial alleles in a finite population. We find that seed banking does not affect the probability of fixation and confirm expectations of increased times to fixation. We also confirm earlier findings that, for strong selection, the times to fixation are not scaled by the inbreeding effective population size in the presence of seed banks, but are shorter than would be expected. As seed banking increases the effective recombination rate, footprints of sweeps appear narrower around the selected sites and due to the scaling of the ARG are detectable for longer periods of time. The developed simulation tool can be used to predict the footprints of selection and draw statistical inference of past evolutionary events in plants, invertebrates, or fungi with seed banks.


Assuntos
Deriva Genética , Banco de Sementes , Evolução Biológica , Plantas/genética , Sementes/genética , Seleção Genética , Modelos Genéticos
2.
Mol Ecol Resour ; 21(7): 2231-2248, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33978324

RESUMO

Several methods based on the sequentially Markovian coalescent (SMC) make use of full genome sequence data from samples to infer population demographic history including past changes in population size, admixture, migration events and population structure. More recently, the original theoretical framework has been extended to allow the simultaneous estimation of population size changes along with other life history traits such as selfing or seed banking. The latter developments enhance the applicability of SMC methods to nonmodel species. Although convergence proofs have been given using simulated data in a few specific cases, an in-depth investigation of the limitations of SMC methods is lacking. In order to explore such limits, we first develop a tool inferring the best case convergence of SMC methods assuming the true underlying coalescent genealogies are known. This tool can be used to quantify the amount and type of information that can be confidently retrieved from given data sets prior to the analysis of the real data. Second, we assess the inference accuracy when the assumptions of SMC approaches are violated due to departures from the model, namely the presence of transposable elements, variable recombination and mutation rates along the sequence, and SNP calling errors. Third, we deliver a new interpretation of SMC methods by highlighting the importance of the transition matrix, which we argue can be used as a set of summary statistics in other statistical inference methods, uncoupling the SMC from hidden Markov models (HMMs). We finally offer recommendations to better apply SMC methods and build adequate data sets under budget constraints.


Assuntos
Genética Populacional , Modelos Genéticos , Genoma , Cadeias de Markov , Densidade Demográfica
3.
PLoS Genet ; 17(4): e1009504, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33826613

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1008698.].

4.
J Evol Biol ; 33(9): 1203-1215, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32516463

RESUMO

Standing genetic variation is considered a major contributor to the adaptive potential of species. The low heritable genetic variation observed in self-fertilizing populations has led to the hypothesis that species with this mating system would be less likely to adapt. However, a non-negligible amount of cryptic genetic variation for polygenic traits, accumulated through negative linkage disequilibrium, could prove to be an important source of standing variation in self-fertilizing species. To test this hypothesis, we simulated populations under stabilizing selection subjected to an environmental change. We demonstrate that, when the mutation rate is high (but realistic), selfing populations are better able to store genetic variance than outcrossing populations through genetic associations, notably due to the reduced effective recombination rate associated with predominant selfing. Following an environmental shift, this diversity can be partially remobilized, which increases the additive variance and adaptive potential of predominantly (but not completely) selfing populations. In such conditions, despite initially lower observed genetic variance, selfing populations adapt as readily as outcrossing ones within a few generations. For low mutation rates, purifying selection impedes the storage of diversity through genetic associations, in which case, as previously predicted, the lower genetic variance of selfing populations results in lower adaptability compared to their outcrossing counterparts. The population size and the mutation rate are the main parameters to consider, as they are the best predictors of the amount of stored diversity in selfing populations. Our results and their impact on our knowledge of adaptation under high selfing rates are discussed.


Assuntos
Adaptação Biológica/genética , Variação Genética , Modelos Genéticos , Herança Multifatorial , Autofertilização , Evolução Biológica , Deriva Genética , Aptidão Genética , Mutação , Fenótipo , Seleção Genética
5.
Evolution ; 74(7): 1301-1320, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32386235

RESUMO

Inbreeding depression resulting from partially recessive deleterious alleles is thought to be the main genetic factor preventing self-fertilizing mutants from spreading in outcrossing hermaphroditic populations. However, deleterious alleles may also generate an advantage to selfers in terms of more efficient purging, while the effects of epistasis among those alleles on inbreeding depression and mating system evolution remain little explored. In this article, we use a general model of selection to disentangle the effects of different forms of epistasis (additive-by-additive, additive-by-dominance, and dominance-by-dominance) on inbreeding depression and on the strength of selection for selfing. Models with fixed epistasis across loci, and models of stabilizing selection acting on quantitative traits (generating distributions of epistasis) are considered as special cases. Besides its effects on inbreeding depression, epistasis may increase the purging advantage associated with selfing (when it is negative on average), while the variance in epistasis favors selfing through the generation of linkage disequilibria that increase mean fitness. Approximations for the strengths of these effects are derived, and compared with individual-based simulation results.


Assuntos
Evolução Biológica , Epistasia Genética , Depressão por Endogamia , Modelos Genéticos , Autofertilização , Seleção Genética
6.
PLoS Genet ; 16(4): e1008698, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32251472

RESUMO

Several methods based on the Sequential Markovian coalescence (SMC) have been developed that make use of genome sequence data to uncover population demographic history, which is of interest in its own right and is a key requirement to generate a null model for selection tests. While these methods can be applied to all possible kind of species, the underlying assumptions are sexual reproduction in each generation and non-overlapping generations. However, in many plants, invertebrates, fungi and other taxa, those assumptions are often violated due to different ecological and life history traits, such as self-fertilization or long term dormant structures (seed or egg-banking). We develop a novel SMC-based method to infer 1) the rates/parameters of dormancy and of self-fertilization, and 2) the populations' past demographic history. Using simulated data sets, we demonstrate the accuracy of our method for a wide range of demographic scenarios and for sequence lengths from one to 30 Mb using four sampled genomes. Finally, we apply our method to a Swedish and a German population of Arabidopsis thaliana demonstrating a selfing rate of ca. 0.87 and the absence of any detectable seed-bank. In contrast, we show that the water flea Daphnia pulex exhibits a long lived egg-bank of three to 18 generations. In conclusion, we here present a novel method to infer accurate demographies and life-history traits for species with selfing and/or seed/egg-banks. Finally, we provide recommendations for the use of SMC-based methods for non-model organisms, highlighting the importance of the per site and the effective ratios of recombination over mutation.


Assuntos
Genoma de Planta , Traços de História de Vida , Modelos Genéticos , Autofertilização , Animais , Arabidopsis/genética , Arabidopsis/fisiologia , Daphnia/genética , Daphnia/fisiologia , Genética Populacional/métodos
7.
Heredity (Edinb) ; 121(4): 374-386, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30050060

RESUMO

How life-history strategies influence the evolution of populations is not well understood. Most existing models stem from the Wright-Fisher model which considers discrete generations and a fixed population size, thus not taking into account any potential consequences of overlapping generations and demographic stochasticity on allelic frequencies. We introduce an individual-based model in which both population size and genotypic frequencies at a single bi-allelic locus are emergent properties of the model. Demographic parameters can be defined so as to represent a large range of r and K life-history strategies in a stable environment, and appropriate fixed effective population sizes are calculated so as to compare our model to the Wright-Fisher diffusion. Our results indicate that models with fixed population size that stem from the Wright-Fisher diffusion cannot fully capture the consequences of demographic stochasticity on allele fixation in long-lived species with low reproductive rates. This discrepancy is accentuated in the presence of demo-genetic feedback. Furthermore, we predict that populations with K life-histories should maintain lower genetic diversity than those with r life-histories.


Assuntos
Demografia , Genética Populacional , Traços de História de Vida , Modelos Genéticos , Algoritmos , Alelos , Evolução Biológica , Fenótipo , Densidade Demográfica , Probabilidade , Seleção Genética
8.
Evolution ; 72(4): 751-769, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29442366

RESUMO

The mating system of a species is expected to have important effects on its genetic diversity. In this article, we explore the effects of partial selfing on the equilibrium genetic variance Vg , mutation load L, and inbreeding depression δ under stabilizing selection acting on a arbitrary number n of quantitative traits coded by biallelic loci with additive effects. When the U/n ratio is low (where U is the total haploid mutation rate on selected traits) and effective recombination rates are sufficiently high, genetic associations between loci are negligible and the genetic variance, mutation load, and inbreeding depression are well predicted by approximations based on single-locus models. For higher values of U/n and/or lower effective recombination, moderate genetic associations generated by epistasis tend to increase Vg , L, and δ, this regime being well predicted by approximations including the effects of pairwise associations between loci. For yet higher values of U/n and/or lower effective recombination, a different regime is reached under which the maintenance of coadapted gene complexes reduces Vg , L, and δ. Simulations indicate that the values of Vg , L, and δ are little affected by assumptions regarding the number of possible alleles per locus.


Assuntos
Variação Genética , Depressão por Endogamia , Mutação , Seleção Genética , Autofertilização , Frequência do Gene , Modelos Genéticos
9.
Evolution ; 71(5): 1178-1190, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28262926

RESUMO

Phylogenies indicate that the transition from outcrossing to selfing is frequent, with selfing populations being more prone to extinction. The rates of transition to selfing and extinction, acting on different timescales, could explain the observed distributions of extant selfing species among taxa. However, phylogenetic and theoretical studies consider these mechanisms independently, that is transitions do not cause extinction. Here, we theoretically explore the demographic consequences of the evolution of self-fertilization. Deleterious mutations and mutations modifying the selfing rate are recurrently introduced and the number of offspring depends on individual fitness, allowing for a demographic feedback. We show that mutational meltdowns can be triggered in populations evolving near strict selfing. Populations having survived a demographic crash are more stable than ancestral outcrossing populations once deleterious mutations are purged. The relatively rapid time-scales at which extinctions occur indicate that during evolutionary transitions the accumulation of deleterious mutations may not be the cause of extinctions observed on longer time scales, but could lead to the underestimation of transition rates from outcrossing to selfing.


Assuntos
Evolução Biológica , Filogenia , Autofertilização , Consanguinidade , Demografia , Mutação
10.
PLoS One ; 9(1): e86125, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465911

RESUMO

Population extinction due to the accumulation of deleterious mutations has only been considered to occur at small population sizes, large sexual populations being expected to efficiently purge these mutations. However, little is known about how the mutation load generated by segregating mutations affects population size and, eventually, population extinction. We propose a simple analytical model that takes into account both the demographic and genetic evolution of populations, linking population size, density dependence, the mutation load, and self-fertilisation. Analytical predictions were found to be relatively good predictors of population size and probability of population viability when verified using an explicit individual based stochastic model. We show that initially large populations do not always reach mutation-selection balance and can go extinct due to the accumulation of segregating deleterious mutations. Population survival depends not only on the relative fitness and demographic stochasticity, but also on the interaction between the two. When deleterious mutations are recessive, self-fertilisation affects viability non-monotonically and genomic cold-spots could favour the viability of outcrossing populations.


Assuntos
Seleção Genética , Autofertilização , Evolução Molecular , Extinção Biológica , Mutação , Dinâmica Populacional , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...